
VOIP - KAMAILIO

Initial
Installation
of Kamailio
Using Kamailio as SBC

By Ihab Khalil

Initial Installation of
Kamailio

Using Kamailio as an SPC

By Ihab Khalil

© Ihab Khalil

As a first step is configuring any SIP network, and SBC might
be good a good start because it will act as a firewall to your
internal network, in addition, it will allow you to easily
expand your network in the future by adding more PBXs for
geo-redundancy and load balancing.

Prologue

In the daily life of voice providers, the first part in our
network is install SBC which is our session border
controller. Sounds complicated ! not really, it simply means
a server which switch the SIP calls between sub systems.

Its definition “A session border controller is like a firewall
specifically designed for VoIP. It’s a hardware device or a
software application that governs call admission to a
network topology at the border. In this instance, the border
refers to the space where the private network meets the
public Internet. As part of controlling the border, the
system filters calls, manages bandwidth, and protects
against malware and viruses.” (https://getvoip.com/library/
session-border-controller/, Aug 25 2024). The SBC acts like
a firewall for the voice (or media) traffic ensuring its
secured, protected and appropriately handled.

 There are many available commercial SBC software and
hardware, however, in this article, we use kamailio (open
source software) as an SBC.

https://getvoip.com/library/session-border-controller/
https://getvoip.com/library/session-border-controller/

Chapter 1

I nstall your kamailio server is the first step in the
process.

As usual, we use Debian 11 as our base server image (OS)
to install our packages. I would like to add that currently
there are many ways to create your own servers which are
faster and easier to manager like using KUBERNETES which
i hope to cover in a future article.

For this article, we simply created a new VM in our local
openstack server and installing kamailio.

In this installation steps, we will install:
1. Kamailio
2. Mysql server (or we can use mariadb)
3. laravel for UI

Installing Mysql server

we probably have installed mysql servers many times
before. BTW: we do not need to install the mysql on the
same VM instance as the kamailio. We can use another VM
instance or dedicated server on the network as our mysql
server. We can connect to mysql from kamailio over the
network. If you do have a mysql server already running,
you can use it.

However, this article, in our case, since we are building it
from scratch to see how we will configure it to be our SBC,
we will install mysql on the same VM as the kamailio server.

Please remember if you decided to use a remote mysql
server (not installed on the same VM instance), the network
connection between your mysql server and kamailio should
be with very little latency and secured (preferably over a
VPN or over a closed network behind a security firewall). If
the connection between the kamailio server and the mysql
server has high latency, it will slow down your SBC and all
your SIP calls will have high delay which is not what we are
looking for.

Installing mysql is very simple step. Run on your Debian
11 these two commands:

apt update
apt install default-mysql-server

Installing Kamailio

To install Kamailio simply run this command on your
Debian 11 server:

apt install kamailio kamailio-mysql-modules

Reference: (https://kamailio.org/docs/tutorials/devel/
kamailio-install-guide-deb/, Aug 26 2024)

Installing PHP 8.2

sudo dpkg -l | grep php | tee packages.txt

sudo add-apt-repository ppa:ondrej/php
Press enter when prompted

sudo apt update
sudo apt install php8.2 php8.2-cli php8.2-

{bz2,curl,mbstring,intl}
sudo apt install php8.2-fpm
apt-get install php8.2-xml

sudo apt-get install php-mysql
sudo apt-get install php8.2-zip

Installing Composer

Composer is a powerful dependency management tool
for PHP. It simplifies the process of including and managing
external libraries and packages in your PHP projects.

We will use composer to create our Laravel php project.
Laravel is a great PHP framework for developing web
applications. It also supports mysql database server. The
installation requires installing composer

https://kamailio.org/docs/tutorials/devel/kamailio-install-guide-deb/
https://kamailio.org/docs/tutorials/devel/kamailio-install-guide-deb/
https://kamailio.org/docs/tutorials/devel/kamailio-install-guide-deb/

sudo apt install curl git unzip
cd ~

curl -sS https://getcomposer.org/installer -o
composer-setup.php

HASH=`curl -sS https://composer.github.io/
installer.sig`

Verify the installer has the same hash key as defined in
the composer website (https://composer.github.io/
pubkeys.html)

echo $HASH

Then compare the outputs to ensure you downloaded is
safe

php -r "if (hash_file('SHA384', 'composer-
setup.php') === '$HASH') { echo 'Installer
verified'; } else { echo 'Installer corrupt';

unlink('composer-setup.php'); } echo
PHP_EOL;”

It should output “Installer Verified”

Next step is to install composer globally on the machine
sudo php composer-setup.php --install-dir=/usr/

local/bin —filename=composer

https://composer.github.io/pubkeys.html
https://composer.github.io/pubkeys.html

Finally, verify that composer is installed by running the
command to ensure it will run and show the help outputs.

composer

Installing NGINX

 NGINX is a web server to handle the http(s) requests
to laravel PHP server to be able to view the configurations
pages. NGINX is not used for the voice traffic, its only, in
our case, used to view the configurations and edit the
configurations for kamailio to secure and switch our voice
traffic.

sudo apt-get install nginx

Chapter 2

Creating the user interface is our task for this chapter.
As we installed in the last chapter, we will use
Laravel to be our user interface to be able to

configure kamailio especially:
1. we can configure the outbound peers
2. we can configure the internal PBXs

The project name will be called sbc, and we will install it
in the /srv directory.

cd /srv

sudo mkdir sbc

sudo chmod 777 sbc

cd sbc

composer create-project laravel/laravel sbc

cd sbc

In this step we will create a .env file for the project, we
will copy the default example version:

cp .env.example .env

Then we should edit the .env file, set the application
name to SBC

APP_NAME=SBC

To set use mysql and set the database name to sbc_db, of
course if you changed the database user/pass access, set
this in this section of the .env file. Also if the database is
hosted on a different server, use the server IP or domain
name in the DB_HOST field. The configurations below uses
password as password, please make sure to change the
passwords to hard passwords when deploying to a public
environment.

DB_CONNECTION=mysql

DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=sbc_db
DB_USERNAME=sbc
DB_PASSWORD=password

you will need to create the table in the mysql db

$ sudo mysql -u root
> create database sbc_db;
> exit

Next, we will work on adding the filamentphp package to
laravel, the filamentphp package makes creating the UI
pages much easier - saves us from making blades and
controllers. It is a great package and saves us a lot of
development time.

composer require filament/
:"^3.2" -W

php artisan filament:install --panels

php artisan make:filament-user

Next step is to create the database on the mysql server.
Again, in our case here, the server is installed on the same
VM/machine. So we will login to the mysql server and
CREATE a DATABASE using these commands. Kamailio has
a script to create its database, if you want to change the
database name or its location, edit the file /etc/kamailio/
kamctlrc. Please note i did not use the same username for

larvel and kamailio. Kamailio init scripts will fail if the user
already exists.

DBENGINE=MYSQL
DBHOST=localhost
DBPORT=3306
DBNAME=kamailio
DBRWUSER="kamailio"
DBRWPW="password"
DBROUSER="kamailioro"
DBROPW="kamailioro"

Then after editing the configurations to enable mysql and
setup the host and user/pass, we should run the script to
create the kamailio database

sudo kamdbctl create

It will ask you for the database language charset, choose
UTF32 for the database char set.

Configure Nginx

In previous chapter we created the sbc laravel project in
the /srv path. Now, we will need to configure nginx to point
to /srv/sbc/sbc/public path. To configure nginx, simply
enable it first

sudo systemctl enable nginx

sudo systemctl start nginx

You will need to edit file /etc/nginx/sites-enabled/default
to include our default server configurations:

server {
 listen 80;
 server_name _;
 root /srv/sbc/sbc/public;

 add_header X-Frame-Options
"SAMEORIGIN";
 add_header X-XSS-Protection "1;
mode=block";
 add_header X-Content-Type-Options
"nosniff";

 index index.html index.htm index.php;

 charset utf-8;

 location / {
 try_files $uri $uri/ /index.php?
$query_string;
 }

 location = /favicon.ico { access_log off;
log_not_found off; }
 location = /robots.txt { access_log off;
log_not_found off; }

 error_page 404 /index.php;

 location ~ \.php$ {
 fastcgi_pass unix:/var/run/php/php8.1-
fpm.sock;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME
$realpath_root$fastcgi_script_name;
 include fastcgi_params;
 }

 location ~ /\.(?!well-known).* {
 deny all;
 }
}

You can delete any other server configurations in the /
etc/nginx/sites-enabled/default, the only server config is the
one above for now.

In the future, you can add the domain to the nginx
configurations (under field server_name, and use https (ssl)

instead of un-encrypted http. But for the purpose of this
document, we will just use http.

Now, lets test to see if nginx is running. Simply open your
browser and open the IP of the server, you should see a
page similar to this one:

The error above appear because we did not setup the
laravel permissions yet.

Configure Laravel

first cd to the directory where we created the sec project
cd /src/sbc/sbc

the do a composer update
composer update

composer require laravel/passport

Create a user to access the database

sudo mysql -u root

> CREATE USER 'sbc'@'localhost' IDENTIFIED
BY ‘password’;

> GRANT ALL PRIVILEGES ON *.* TO
‘sbc’@'localhost';

> FLUSH PRIVILEGES;

Then edit the .env file to put the username and password
for the new user:

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=sbc_db
DB_USERNAME=sbc
DB_PASSWORD=password

Then we give permissions for the directories which will
be accessed from the web server nginx:

php artisan storage:link
sudo chown -R www-data:www-data storage

sudo chown -R www-data:www-data bootstrap/
cache

sudo chmod -R 775 storage
sudo chmod -R 775 bootstrap/cache

php artisan key:generate
php artisan passport:keys

php artisan cache:clear
php artisan route:clear
php artisan config:clear
php artisan view:clear

php artisan passport:install

Create the filamentphp panel:
php artisan filament:install —panels

then create the first user:
php artisan make:filament-user

It will ask you for the username and password for the
user. If it gives you error “Filament has not been installed
yet: php artisan filament:install —panels”, then edit app/
Providers/Filament/AdminPanelProvider.php and add
->default() to the $panel.

Then add the login() to the panel, edit app/Providers/
Filament/AdminPanelProvider.php and add to the $panel

->login()

Now, lets try to login to our web portal
http://localhost/admin, you should see the login page

http://localhost/admin

and enter the email and password, you should be able to
login

Before starting the next chapter to start adding upstream
providers (CLAC or telecom) and PBX peers, then start
routing the calls based on the area code and DID (phone
number), we need to note:

1. try to run this command to ensure kamailio is running
ps aux | grep kamailio

you should see a lot of processes running

2. If you wish to re-create the kamailio tables:
sudo mysql -u root
> drop user kamailio@*;
> drop user kamailio@192.168.0.1;
> drop user kamailioro@*;

sudo kamdbctl reinit

- Install presence related tables? (y/n): y
- rtpproxy rtpengine secfilter? (y/n): n
- uid_uri_db? (y/n): y

3. try this command to get into the kamailio command
line interface:

sudo kamcmd

It should print something like:

kamcmd 1.5

Copyright 2006 iptelorg GmbH
This is free software with ABSOLUTELY NO
WARRANTY.
For details type `warranty'.

kamcmd>

then enter exit to exit the kamailio command line

Peers

In many of the peers we define them by their IP and port,
we usually do not configure authentication user/password.
to add these peers to the list. For this part, lets test with
twilio, (an account with twilio is required for this step) :

1. goto Elastic SIP Trunking, and create a new trunk.
2. under your new trunk configurations, select

origination, then add new origination url:

3. in the Origination SIP URI, add your server IP, don’t
forget you need to add sip: prefix. For example:
sip:88.88.88.88

4. in the Termination configuration, click on add IP
Access Control List, and add your server IP

sip:88.88.88.88

Configure the connection for Laravel to the kamailio
DB

Now noticed that laravel is using sbc_db but kamailio is
using kamilio database. We need to see the database for
kamailio in laravel to be able to edit it, and do reports on it.
So in laravel we will add a new connection in config/
database.php (edit file /srv/sbc/sbc/config/database.php)
and add to the connection array:

 'kamailio' => array(
 'driver' => 'mysql',

 'host' => 'localhost',
 'database' => 'kamailio',
 'username' => 'kamailio',
 'password' => 'password',
 'prefix' => '',
),

Now lets add a peer to kamailio:

kamctl address add 200 54.172.60.0 30 5060
twilio_virgina

Now, lets create a laravel model for the authorization
tables (address) to view the list of endpoints (or peers) with
IP based authentication and be able to edit this list from
web interface.

Creating the Address Page in the Web Portal

First lets create a new model in laravel for the address
table (notice the model name starts with capital letter A):

php artisan make:model Address
Next open the created model and set the connection and

table it should use:
vi app/Models/Address.php
add these two lines to the class Address

 protected $connection= 'kamailio';
 protected $table = 'address';

Next step is to add the view using filamentphp,
1. create the resource
php artisan make:filament-resource address

2. edit the resource file

vi app/Filament/Admin/Resources/AddressResource.php

3. add these to the $form->schema([
TextInput::make('grp'),
TextInput::make('ip_addr'),

 TextInput::make('mask'),
 TextInput::make('port'),
 TextInput::make(‘tag'),
]);

 4. add these fields to return $table
 ->columns([
 TextColumn::make('grp'),

TextColumn::make('ip_addr'),

TextColumn::make('mask'),

TextColumn::make('port'),
 TextColumn::make('tag'),
])

now open the web browser and login, you will
find a menu item called address, click on it
and you should see the peer information we
added above to kamailio

In next section, we will use the kamailio
carrier routing module, its documentations
is available at this link:
https://www.kamailio.org/docs/modules/
stable/modules/carrierroute.html#idm59

Configure Routing in Kamailio

1. we need to configure in kamailio configurations:

loadmodule "carrierroute.so"

modparam("carrierroute", "config_source",
“db”);

https://www.kamailio.org/docs/modules/stable/modules/carrierroute.html#idm59

modparam("carrierroute", "db_url",
"mysql://user:password@localhost/
kamailio")

modparam("carrierroute",
"carrierroute_table", "carrierroute")

2. we need to add the route in the kamailio.cfg
configurations:

Apply carrier route
 if (cr_route("1")) {
 route(RELAY);
 exit;
 }

Create UI page for the routing

this is the definition of the carrier route table

mysql> describe carrierroute;
+----------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+----------------+
id	int unsigned	NO	PRI	NULL	auto_increment
carrier	int unsigned	NO		0	
domain	int unsigned	NO		0	
scan_prefix	varchar(64)	NO			
flags	int unsigned	NO		0	
mask	int unsigned	NO		0	
prob	float	NO		0	
strip	int unsigned	NO		0	
rewrite_host	varchar(255)	NO			
rewrite_prefix	varchar(64)	NO			
rewrite_suffix	varchar(64)	NO			
description	varchar(255)	YES		NULL	
+----------------+--------------+------+-----+---------+----------------+
12 rows in set (0.00 sec)

Add GUI for the Routing

In the laravel project directory, run this command to
create a new model for the routing table

php artisan make:model Routing

Then edit the new Routing model
vi app/Models/Routing.php

add these two lines to the class Routing

 protected $connection= 'kamailio';
 protected $table = 'carrierroute';

Next step is to add the view using filamentphp,
1. create the resource
php artisan make:filament-resource routing

2. edit the resource file

vi app/Filament/Admin/Resources/RoutingResource.php

3. add these to the $form->schema([
TextInput::make('carrier'),
TextInput::make('domain'),

 TextInput::make('prefix'),
 TextInput::make(‘rewrite_host'),
 TextInput::make(‘rewrite_prefix’),
]);

 4. add these fields to return $table

 ->columns([
TextColumn::make('carrier'),
TextColumn::make(‘domain'),
TextColumn::make('prefix'),
TextColumn::make(‘rewrite_host'),
TextColumn::make(‘rewrite_prefix'),
])

About the Author

Ihab Khalil MEng,

	Prologue
	Chapter 1
	Chapter 2
	About the Author

